
October 2023

05

Vol. XVI & Issue No. 10 October - 2023

PERFORMANCE IMPROVISATION INSIDE CACHE TILE USING MAPPING
ALGORITHM

Ms. Suma sannamani
Dr. Manjudevi

Abstract

There is huge demand for improvisation of cache memory performance considering multiprocessors. Cache memory arranged in tile
fashion. These cache tiles are placed in multiple levels. Here work involves survey of existing search algorithm to draw conclusions
and to develop algorithm which reduces number of searches required. There by improvisation performance parameter latency.
Latency reduction is achieved by avoiding unnecessary search through all location.
Keywords: Cache memory, Search algorithm, latency.

INTRODUCTION

Many applications including mobile and processors demand
cache with high performance. Uniform cache architecture
performance fig 1(a) is poor due to wire delay problem.
Multiple level cache fig 1(b) helps to improvise performance
by providing parallel access.

 Figuare 1(a) UCA Figuare 1(b)ML-UCA

Cache is small and temporary memory that exist in between
processor and main memory as shown in figure 2.

Multiple Levels of Memory:

1)	Register – Registers exist on chip. These are fastest
memory. Common registers available are accumulator, PC-
program counter, Stack pointer/address register etc.

2)	Cache memory – This is the memory we are working on.
Here in cache data is stored temporarily with the advantage
smaller access time. Hence it is the fastest memory.

3)	Main Memory – It is a volatile memory; Size is large
compared to cache. Less fast compared to cache.

4)	Secondary Memory – It is non-volatile in nature. Speed is
less compared to RAM but it has the advantage of storing
data permanently. Key points to be considered during search
inside cache are: 1) Hit: The address to be searched present
in cache. 2) Miss: The address to be searched not found in
cache.

Figure 2: CPU with multiple levels of memory

Cache Mapping: Data mapping is categorised into three types
in cache memory. Direct, Set-Associative and Associative
mapping. Here the design is made using direct mapping
technique. Direct-Mapping is simplest way of mapping. It
maps each main memory block into only specified cache
memory line. The previous block is trashed when another
main memory block needs to be loaded to same place. Address
of cache is divided into tag and index field. Tag is stored in
cache. The remaining part of address is same as main memory
address.
i = n modulo m
i=cache memory line number
n= RAM block number
m=Total number of cache lines

BACK GROUND WORK

Acharya [1] presents cache trie search algorithms. There are
main three important features that exist for this algorithm. B tree
hash table vector using data structure is developed for each node.
considering cache characteristics and the fan-out of the node,
data structure is decided. Changing the data structure design
in dynamic fashion, they adapt to changes in the fanout. The
layout and size of data structure is depends on size of symbols
in alphabet. Brodal [2] presents a cache-oblivious algorithm.
In this algorithm there is no multiple cache hierarchy. Design is
considered with only one level of memory. The design does not

October 2023

06

consider or it does not have knowledge of memory hierarchies.
Design is analyzed in a two-level I/o model. Hence result or
algorithm can be applied to multi-level hierarchies. search tress
has search cost O is log BN I/O s and it has search cost same
as B-trees. Real-time indices are the aspects of modern search
engines. These get incorporated the change in content within
seconds. These search engines help to reduce user latency and
back-end load. CIP – the cache invalidation predictor [3] is an
architectural component. Researcher discuss cache memory
replacement techniques. LRU-Least recently used technique
fails to work with freshness over time and CIP gives better
results with 97 percent of queries with fresh results. T. C. Xu [4]
work on mapping algorithm considering big data applications.
Data processing is on demand. Data needs to be processed very
fast. Work is to explore characteristics of data applications with
multi core processor and shared cache. Performance metrics
considered is latency. Belady’s algorithm [5] is an optimal
solution. This algorithm is infeasible as it needs understanding
of the future. The researcher justifies that the algorithm is
efficient way, as it introduces a unique way for efficiently
simulate Belady’s behavior and to represent the long history
information they have used a known sampling technique that is
needed achieve high accuracy.

This paper [6] explain a algorithm is to implement, deployment
experience of cache stack. Cache traffic is portioned into
disjoint categories by cache stack and analyze the benefit for
cache from each subset. Knapsack problem is formulated to
match the best admission policy to each cache set. Tree-
based backtracking search [7] is a technique to find solution
for distributed constraint optimization problem. Here there is
effective reuse of historical search. Hence, reducing the overall
overhead. This paper proposes Retention Scheme (RS) for
tree-based synchronous backtracking search. Javier marino [8]
presents dynamic cache partitioning. Divides L2 bank into a
private and shared partition. Placing private data closure to core
processor. Depending on the work load proposed architecture
self adjust the sharing partition.

Cache indexing policy [9] reduces the conflict misses. Indexing
policy spreads the references to the all-cache memory sets.
Power consumption is the performance parameter considered.
Merino, V [10] proposed Enhanced Shared-Private Non-
Uniform Cache Architecture (ESP-NUCA), which is suitable
for high performance processor and it is also cost effective.
During run time to determine the cache memory configuration
the approaches are introduced. These approaches are based
on algorithms to test cache configuration in variety of orders
[11, 12, 13,14, 15]. Energy consumption estimations with
mathematical model are used to determine cache performance
during runtime [11,12,13,15] or to find cache miss rate[14].
Reconfiguration is made according to selected configuration
candidate. Then comparison is made between previous one and
reconfigured cache. Conclusion is drawn.

DESIGN

Considering physical address bits as 12 bits. One cache tile
has 32 locations. There exist eight blocks. Each block contains
four bytes.

Offset bits are log2 (number of words per block) = log2 (4)=2

Index bits are log2 (number of blocks in cache) = log2 (256) =8

Tag bits=Physical address-offset bits-Index bits=2

As each tile has 32 location, always upper 5 bits of Index
remain same. Hence, it reduces 32 location address comparison
to 1 comparison. Hence this search algorithm by using direct
mapping improves performance.

Figure 3: Physical address

TAG: TAG bits
CA=INDEX bits + offset bits
DATA=Data bits of cache

RESULTS

Figure 4: Stored memory of a tile

Figure 4 shows memory picture of the cache tile with
twenty four bit data stored. There are eight blocks with each
block containing four locations. Figure 6 Search algorithm
experiencing hit in tile1 with HM_Le1 going high. Hence data
reflected on DATA bits otherwise it will be unknown.

RTL schematic of tile is shown in figure 5. Address to be
searched is sent through TAR _Test Address Register. RDWR
represents weather operation related to read or writing data
from or to cache memory. Data1 will have 24-bit data if search
experience hit otherwise, it remains empty. HM1 represents
weather tile experience hit/miss.

Figure 5: RTL Schematic of a tile

October 2023

07

TAR: Test Address Register
clk: Clock
RDWR: Read/Write operation
HM1: Hit or Miss in Tile
Data: Data if tile has experienced hit
Tool used: Xilinx ISE

Figure 6: Simulation results

HM_Le1:1=hit,0=miss

Data: Data from location where hit occurred

TAR: Search address

Figure 6 depicts search through tile_1 experiencing hit . Hence
HM_Le1 is high and data from location where hit has occurred
is reflected on to data lines.

CONCLUSION

The design of cache tiles helps to avoid unnecessary search. The
design uses direct mapping technique. The design of tile is such
that it removes thirty one comparisons of index bits and helps
to improve the performance by reducing latency. Performance
improvisation by reducing latency is the very important when
it comes application of cache memory which is achieved with
minimum Gate delay of 0.575 ns.

ACKNOWLEDGEMENT

The authors would like to thank Visvesvaraya Technological
University, Belagavi and the Department of ECE, Oxford
College of Engineering, Bangalore for the assistance provided
for this work.

REFERENCE
1. 	 Acharya, Anurag, Huican Zhu, and Kai Shen. “Adaptive

algorithms for cache-efficient trie search.” Workshop on
Algorithm Engineering and Experimentation. Springer,
Berlin, Heidelberg, 1999.

2. 	 Brodal, GerthStølting. “Cache-oblivious algorithms and
data structures.” In Scandinavian Workshop on Algorithm
Theory, pp. 3-13. Springer, Berlin, Heidelberg, 2004.

3. 	 Bortnikov, E., Lempel, R., Vornovitsky, K. (2011). “Caching
for Realtime Search”. In: , et al. Advances in Information
Retrieval. ECIR 2011. Lecture Notes in Computer
Science, vol 6611. Springer, Berlin, Heidelberg. https://
doi.org/10.1007/978-3-642-20161-5_12.

4. 	 T. C. Xu and V. Leppänen, “A cache- and memory-aware
mapping algorithm for big data applications,” 2015
Fifth International Conference on Digital Information

Processing and Communications (ICDIPC), 2015, pp. 110-
115, doi: 10.1109/ICDIPC.2015.7323015.

5. 	 Akanksha Jain Calvin Lin.2016 “ Back to the Future:
Leveraging Belady’s Algorithm for Improved Cache
Replacement” . In Proceedings of the 43rd International
Symposium on Computer Architecture (ISCA ‘16). IEEE
Press, 78–89.

6. 	 Tzu-Wei Yang, Seth Pollen, Mustafa Uysal, Arif Merchant,
and Homer Wolfmeister, Google . “Cache Sack:
Admission Optimization for Google Datacenter Flash
Caches “USENIX Annual Technical Conference USENIX
Association ,2022. https://www.usenix.org/conference/
atc22/presentation/yang-tzu-wei

7.	 Wang, Jie ; Chen, Dingding ; Chen, Ziyu ; Liu,
Xiangshuang ; Gao, Junsong,” Completeness Matters:
Towards Efficient Caching in Tree-Based Synchronous
Backtracking Search for DCOPs“,28th international
conference on principles and practice of constraint
programming,pp :39:1-39:17

8. 	 Javier Merino, Valentín Puente, Pablo Prieto, José Ángel
Gregorio,” SP-NUCA: A Cost Effective Dynamic Non-
Uniform Cache Architecture”, ACM SIGARCH Computer
Architecture News 64 Vol. 36, No. 2, May 2008 ,pp-64-71.

9. 	 Ros, P. Xekalakis, M. Cintra, M. E. Acacio and J. M.
Garcıa, “Adaptive Selection of Cache Indexing Bits for
Removing Conflict Misses,” in IEEE Transactions on
Computers, vol. 64, no. 6, pp. 1534-1547, 1 June 2015,
doi: 10.1109/TC.2014.2339819.

10. 	Merino, V. Puente, and J. Gregorio, “ESP-NUCA: A low-
cost adap- tive non-uniform cache architecture,” in Proc.
16th Int. Symp. High Per- formance Comput. Architecture
(HPCA’10), 2010, pp. 1–10.

11. 	Ann Gordon-Ross, Frank Vahid, and Nikil D. Dutt. 2009.
Fast configurable-cache tuning with a unified second-level
cache. IEEE Trans. VLSI Syst. 17, 1 (2009), 80–91

12.	 Osvaldo Navarro and Michael Hubner. 2014. An adaptive
victim cache scheme. In Proceedings of the 2014
International Conference on ReConFigurable Computing
and FPGAs (ReConFig’14). IEEE, 1–4.

13.	 Osvaldo Navarro, Tim Leiding, and Michael Hubner.
2015. Configurable cache tuning with a victim cache.
In Proceedings of the 10th International Symposium on
Reconfigurable Communication-centric Systems-on-Chip
(ReCoSoC’15). IEEE, 1–6.

14.	 Chuanjun Zhang, Frank Vahid, and Roman Lysecky. 2004.
A self-tuning cache architecture for embedded systems.
ACM Trans. Embed. Comput. Syst. 3, 2 (2004), 407–425.

15.	 Bruno A. Silva, Lucas A. Cuminato, Vanderlei Bonato,
and Pedro C. Diniz. 2015. Run-time cache configuration
for the LEON-3 embedded processor. In Proceedings of
the 28th Symposium on Integrated Circuits and Systems
Design (SBCCI’15). ACM, New York, NY, Article 42, 6
pages. DOI:https://doi.org/10.1145/2800986.2801026.

October 2023

08

AUTHORS

Ms. Suma sannamani, Research Scholar, Visvesvaraya
Technological University, Jnana Sangama, Belagavi – 590 018,
Karnataka, India
Email: sumabs2014@gmail.com / 088926 31066

Dr. Manjudevi , Professor & Head, Department of Electronics
and Communication Engineering, The Oxford College of
Engineering, Bommanahalli, Hosur Road, Bengaluru – 560
068, Karnataka, India
Email: manju3devi@gmail.com / 094487 61979

	IIIE Journal October 2023

